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EFFECT OF THE CHEMICAL REACTION AND INJECTION
ON FLOW CHARACTERISTICS IN AN UNSTEADY
UPWARD MOTION OF AN ISOTHERMAL PLATE

R. Muthucumaraswamy' and P. Ganesan? UDC 532.72:669.015.23

The transient incompressible viscous fluid flow regime past a semi-infinite isothermal plate under
conditions of natural convection is studied numerically. The solution obtained takes into account the
first-order homogeneous chemical reaction and the mass fluz through the plate. The calculated velocity
profile is in good agreement with the known exact solution. Velocity, temperature, and concentration
profiles are presented. It is shown that the fluid velocity decreases with increasing chemical reaction
parameter. The distributions of local and averaged values of skin friction and Nusselt and Sherwood
numbers are analyzed.

Introduction. There are some natural and industrial processes in which heat and mass transfer is a
consequence of buoyancy effects caused by diffusion of heat and chemical species. The study of such processes is
useful for improving a number of chemical technologies, such as fiber drawing, crystal pulling from the melt, and
polymer production.

Stokes [1] obtained the exact solution of the Navier—Stokes equation for the incompressible viscous fluid flow
past an impulsively started infinite horizontal plate. Following the analysis of [1], Soundalgekar [2] found the exact
solution of the problem of the viscous flow past an impulsively started infinite isothermal vertical plate. A similar
problem for the case of the flow past an infinite isothermal vertical plate with mass transfer was solved in [3]. In [4],
this problem was analyzed numerically; the plate was assumed to be semi-infinite, and the governing equations (in
a dimensionless form) were solved by an implicit finite-difference scheme of the Crank—Nicholson type. The mass-
transfer process in an unsteady flow past an infinite isothermal vertical plate with homogeneous mass injection was
analyzed in [5, 6] using the conventional technique of the Laplace transform. Das et al. [6] studied the effect of the
first-order homogeneous chemical reaction on the process of an unsteady flow past an infinite vertical plate with a
constant heat and mass transfer.

Nevertheless, the problem of unsteady natural convection near a semi-infinite vertical plate with regard for
the chemical reaction has not been adequately studied. In the present work, this problem is solved using the implicit
finite-difference Crank—Nicholson scheme.

1. Governing Equation and Mathematical Formulation. We consider an incompressible viscous fluid
flow past an impulsively started semi-infinite isothermal vertical plate with mass addition. It is assumed that the
influence of viscous dissipation in the energy equation is negligibly small, and there is a chemical reaction between
the diffusing components and the fluid. The x axis is directed vertically upward along the semi-infinite plate, and the
y axis is normal to the plate. Initially, the plate and the fluid have an identical temperature, and the concentration
is homogeneous. At ¢’ > 0, the plate starts to move vertically upward with a constant velocity ug in the direction
opposite to the gravitational field. As a result of the first-order homogeneous chemical reaction, the temperature
and concentration of reaction products near the plate increase.

Taking into account the above assumptions, the unsteady flow past a semi-infinite vertical plate is described
by the following equations:
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The corresponding initial and boundary conditions are
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oY 3)

U=0, T=0, C=0 for X =0,
U—-0, T—0, C—-0 for Y — oc.

2. Procedure of the Solution. The unsteady nonlinear coupled equations (2) with conditions (3) are
solved using the implicit finite-difference Crank—Nicholson scheme.

We consider a rectangular domain of integration with the sides Xyax = 1 and Yipax = 16, where Yiax
corresponds to Y = co. The value Y,  lies well outside the boundary layers (dynamic, thermal, and concentration
ones) and was chosen after preliminary calculations so that two last boundary conditions (3) were satisfied within
the tolerance limit of 1072, After experimenting with several meshes, the mesh size was chosen equal to AX = 0.05
and AY = 0.25, and the time step was At = 0.01.

The calculations are performed until the steady state is reached. It is assumed that the steady solution is
obtained when the difference in the values of U, and also the temperature T and concentration C, in two sequential
time steps becomes smaller than 10~° at all point of the mesh.

The local “truncation” error O(At? +AY?2+ AX) tends to zero when At, AX, and AY tend to zero. Hence,
the scheme is compatible. The finite-difference scheme is unconditionally stable, as is shown in [4]. Stability and
compatibility ensure convergence.
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Fig. 1 Fig. 2

Fig. 1. Velocity profiles in the absence of the reaction (Pr = 0.71, ¢t = 0.2, and K = 0): the solid curves are the
results of the present work and the points are the data of [5]; curve 1 refers to Gr = 5, Gc = 5, and Sc = 0.24 and
curve 2 refers to Gr = 0.4, Gec = 0.2, and Sc = 1.

Fig. 2. Transient velocity profiles for X = 1 (Gr = 2, Gc = 5, and Pr = 0.71): curve 1 refers to K = 0.2, Sc = 0.16,
and ¢t = 0.78, curve 2 to K = 0.2, Sc = 0.16, and t = 4.2 (steady regime), curve 3 to K = —2, Sc = 0.6, and
t = 0.82, curve 4 to K = —2, Sc = 0.6, and ¢t = 6.1 (steady regime), curve 5 to K = —1, Sc = 0.6, and t = 6.7
(steady regime), curve 6 to K = 0.2, Sc = 0.6, and ¢ = 11.6 (steady regime), curve 7 to K = 2, Sc = 0.6, and
t = 12.7 (steady regime), curve 8 to K = 0.2, Sc = 2, and ¢t = 13.7 (steady regime); curve 9 to K = —2, Sc = 0.6,
and ¢t = 0.3, and curve 10 to K = —2, Sc = 0.6, and ¢t = 0.15.

3. Results and Discussion. To ascertain the accuracy of calculations, the data of the present study are
compared with the known exact solution [5] for the case K = 0. The results compared are in good agreement
(Fig. 1). The values K > 0 and K < 0 refer to destructive and generative reactions, respectively.

The transient velocity profiles are plotted in Fig. 2 for different values of the chemical reaction parameter
and Schmidt numbers (cross section X = 1). It is seen that the velocity increases with time for Pr = 0.71,
Gr =2, Gc =5, Sc = 0.6, and K = —2, reaches a maximum at ¢t = 0.82, and becomes steady at ¢t = 6.1. The
velocity increases during the generative reaction and decreases during the destructive reaction. Obviously, the
velocity increases with decreasing Schmidt number or chemical reaction parameter. The increase in velocity may
be attributed to the fact that the rate of mass transfer in the fluid, which affects the buoyancy forces, increases
as the Schmidt number decreases. The time necessary for the velocity to reach the steady state increases with
increasing Schmidt number or chemical reaction parameter. However, the time needed to reach the steady velocity
depends both on the Schmidt number and on the chemical reaction parameter. The contribution of mass diffusion
to the buoyancy forces increases the maximum velocity significantly. Figure 3 shows the steady velocity profiles for
different values of the thermal and mass Grashof numbers and the Prandtl number. The velocity increases with
increasing thermal or mass Grashof number and decreases with increasing Prandtl number.

The transient and steady temperature profiles for different values of the Prandtl number and chemical
reaction parameter are shown in Fig. 4. It is known that the Prandtl number plays an important role in flow pro-
cesses, since it characterizes the ratio of thicknesses of the dynamic and thermal boundary layers. The temperature
increases with increasing chemical reaction parameter and decreases with increasing Prandtl number.

The effect of the chemical reaction parameter and the Schmidt number is very important for concentration
profiles. The transient and steady profiles of concentration for different values of the chemical reaction parameter
are shown in Fig. 5. A decrease in concentration is observed with increasing chemical reaction parameter. Figure 6
shows the concentration profiles for different values of the thermal Grashof number. The concentration increases
with decreasing Gr.
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Fig. 3. Steady velocity profiles for X =1 (Sc = 0.6 and K = 0.2): curve 1 refers to Gr = 5, Ge = 10, Pr = 0.71,
and t = 7.1, curve 2 to Gr = 5, Gc = 5, Pr = 0.71, and t = 7.4, curve 3 to Gr = 2, Gc = 5, Pr = 0.71, and
t = 11.6, and curve 4 to Gr =2, Gc =5, Pr =7, and ¢t = 10.3.

Fig. 4. Temperature profiles for X = 1 (Gr = 2 and Ge¢ = 5): curve 1 refers to K = 2, Pr = 0.71, and ¢ = 0.67,
curve 2 to K =2, Pr = 0.71, and ¢t = 12.7 (steady regime), curve 3 to K = —2, Pr = 0.71, and ¢ = 6.1, curve 4
to K =2, Pr=0.71, and t = 0.2, curve 5 to K =2, Pr = 0.71, and ¢t = 0.15, and curve 6 to K = 2, Pr = 7, and
t = 10.4 (steady regime).
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Fig. 5. Concentration profiles for X = 1 (Gr = 2, Gc = 5, and Pr = 0.71): curve 1 refers to K = —2, Sc = 0.6,
and t = 6.1, curve 2 to K = —1, Sc = 0.6, and t = 6.7, curve 3 to K = 0.2, Sc = 0.6, and ¢t = 11.6, curve 4 to
K =2,Sc=0.6, and t = 12.7, and curve 5 to K = 0.2, Sc = 2, and ¢t = 13.7.

Fig. 6. Concentration profiles for X =1 (Pr = 0.71, Sc = 0.6, K = 0.2, and Gc = 5) and Gr = 2 (1), 5 (2), and
10 (3).
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Fig. 7. Local skin friction versus the coordinate X (Pr = 0.71, Gr = 0.4, and Gc = 0.2): curve 1 refers to K = 0.2
and Sc = 0.6, curve 2 to K = —2 and Sc = 0.6, and curve 3 to K = 0.2 and Sc = 0.16.

Fig. 8. Local Nusselt number versus the coordinate X (Pr = 0.71): curve 1 refers to Gr = 5, G¢ = 10, Sc = 0.6,
and K = 0.2, curve 2 to Gr =5, Gc =5, Sc = 0.6, and K = 0.2, curve 3 Gr =2, Gc =5, Sc = 0.6, and K = 0.2,
curve 4 to Gr =2, G¢c =5, Sc = 0.6, and K = 2, and curve 5 to Gr =2, Gc =5, Sc = 2, and K = 0.2.
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Fig. 9. Local Sherwood number versus the coordinate X (Gr = 2, G¢ = 5, and Pr = 0.71): curve 1 refers to
K =2 and Sc = 0.6, curve 2 to K = 0.2 and Sc = 0.6, curve 3 to K = —1 and Sc = 0.6, curve 4 to K = —2 and
Sc = 0.6, and curve 5 to K = 0.2 and Sc = 0.16.

Fig. 10. Averaged skin friction versus time (Pr = 0.71, Gr = 0.4, and Gc¢ = 0.2): curve 1 refers to K = 0.2 and
Sc = 0.6, curve 2 to K = —2 and Sc = 0.6, and curve 3 to K = 0.2 and Sc = 0.16.
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Fig. 11. Averaged Nusselt number versus time (Pr = 0.71 and K = 0.2): curve 1 refers to Gr = 5, Ge¢ = 10, and
Sc = 0.6, curve 2 to Gr = 5, Gc = 5, and Sc = 0.6, curve 3 to Gr = 2, G¢c = 5, and Sc = 0.6, and curve 4 to
Gr =2, Gc =5, and Sc = 2.

Fig. 12. Averaged Sherwood number versus time (Gr = 2, G¢ = 5, Sc = 0.6, and Pr = 0.71) for K =2 (1), 0.2 (2),
-1 (3), and —2 (4).

Knowing the velocity, temperature, and concentration fields, we can determine the skin friction, heat-transfer
rate, and concentration rate in transient and steady regimes. The dimensionless and averaged values of skin friction
and Nusselt and Sherwood numbers are determined by the following relations:

1
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We can estimate the derivatives entering system (4) using the five-point approximation formula and then calculate
the integrals using the Newton—Cotes closed integration formula.

The local skin friction calculated by the first equation in (4) is plotted in Fig. 7 as a function of the axial
coordinate X. The values of 7, increase with increasing chemical reaction parameter or Schmidt number.

Figure 8 shows the dependence Nu,(X). It is seen that the heat-transfer rate increases with increasing
thermal and mass Grashof numbers and decreases with increasing Schmidt number. Figure 9 shows the dependence
Sh, (X). Tt is seen that the local Sherwood number increases with increasing Schmidt number. The concentration
rate increases during the destructive reaction and decreases during the generative reaction.

The effect of Gr, Ge, Sc, and the chemical reaction parameter on the averaged values of skin friction and
Nusselt and Sherwood numbers is shown in Figs. 10, 11, and 12. The mean value of skin friction increases with
decreasing Gr or Gc and with increasing Sc during the entire transient period. The averaged Nusselt number
increases with decreasing Sc and increasing Gr or Gc. The averaged Sherwood number increases as the chemical
reaction parameter increases.
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4. Conclusions. A detailed numerical study of the incompressible viscous fluid flow past an impulsively
started semi-infinite isothermal vertical plate with homogeneous mass addition, taking into account the first-order
homogeneous chemical reaction, is presented in the paper. Dimensionless equations are solved using the implicit
finite-difference scheme of the Crank—Nicholson type. Air and water are considered here as a medium wherein the
plate moves. The calculation results are in good agreement with the exact solution in the absence of the chemical
reaction (K = 0). The study performed allows the following conclusions.

1. The velocity and concentration increase during the generative reaction (K < 0) and decrease during the
destructive reaction (K > 0).

2. The temperature increases with increasing chemical reaction parameter and decreases with increasing
Prandtl number.

3. The local and averaged values of the Sherwood number increase with increasing chemical reaction param-
eter.
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